Renal Complications in Sarcoma

an emerging role for "Pediatric Onco-Nephrology"

Seyed Amirhossein Fazeli, MD

Taleghani General Hospital, SBMU, Tehran, Iran

Washington University School of Medicine, St. Louis, MO, USA

CASE

A 10-year-old girl diagnosed with Ewing sarcoma of the right femur has been undergoing multi-agent chemotherapy, including cisplatin, vincristine, doxorubicin, and ifosfamide, now on her 4th cycle. She initially presented with localized bone pain and swelling; a biopsy confirmed Ewing sarcoma. The patient has tolerated treatment relatively well but has recently developed increasing fatigue, muscle cramps, and mild nausea.

She has no history of recent infections or other comorbidities. Her physical exam is notable for mild pallor and mild tenderness at the tumor site. Limb function is preserved with no neurological deficits. Volume status appears normal.

Laboratory data:

Scr: 1.2 mg/dL (baseline 0.5)

Bun: 35 mg/dL

Na+: 140 mEq/L

K+: 3.1 mEq/L

Mg²⁺: 1.2 mg/dL

PO₄³-: 2.0 mg/dL

Cl-: 112 mEq/L

Uric acid: 4.5 mg/dL

pH: 7.31

PaCO₂: 30 mmHg

HCO₃-: 18 mEq/L

Urine sediment: no dysmorphic RBC or casts

Urine output: 1.2 mL/kg/hr

Question:

Which diagnosis best explains this patient's acute kidney injury and biochemical abnormalities?

- A) Cisplatin-induced nephrotoxicity
- B) Tumor lysis syndrome (TLS)
- C) Thrombotic microangiopathy (TMA)
- D) Ifosfamide-induced nephrotoxicity

Drug	Type of Kidney AEs	Mechanism of Kidney AEs	Prevention and Treatment
Platinum agents	AKI-ATN (Cis>>Carbo>Oxali), Fanconi syndrome, hyponatremia, hypomagnesemia	ATN: direct tubular toxicity	Volume expansion, magnesium repletion
Ifosfamide	AKI-ATN, hemorrhagic cystitis, NDI	ATN: direct tubular toxicity; hemorrhagic cystitis: bladder injury	Volume expansion/mesna for hemorrhagic cystitis
Cyclophosphamide	Hyponatremia, hemorrhagic cystitis	Hyponatremia: increased tubular reabsorption of water/? ADH secretion; hemorrhagic cystitis: bladder injury by metabolite	Volume expansion/mesna for hemorrhagic cystitis
Bendamustine	AKI-ATN, NDI, Gitelman	ATN: direct tubular toxicity	
Melphalan	AKI, hyponatremia	SIADH	SIADH: drug withdrawal, usual approach to SIADH
Methotrexate	AKI	Intratubular crystal formation	Volume expansion, urine pH > 7.0, stop PPI, NSAIDs
Pemetrexed	AKI	Acute tubular necrosis, progressive interstitial fibrosis, nephrogenic diabetes insipidus, and distal renal tubular acidosis	Folic acid and vitamin B ₁₂ , adequate hydration
Gemcitabine	AKI, hypertension, proteinuria	TMA	Drug withdrawal, complement inhibitors may be considered
Nitrosoureas	CCNU, Me-CCNU, BCNU: chronic interstitial nephritis, Streptozocin-Fanconi syndrome, AKI	Chronic interstitial nephritis: ? tubular cell protein alkylation; AKI: tubular injury	
Trabectedin	AKI	? secondary to rhabdomyolysis	
Doxorubicin	AKI, hypertension, proteinuria	TMA	TMA: drug withdrawal
Mitomycin C	AKI, hypertension, proteinuria	TMA	TMA: drug withdrawal, ? eculizumab
Vinca alkaloids	AKI, hypertension, proteinuria, hyponatremia	TMA, SIADH	TMA: drug withdrawal; SIADH: drug withdrawal

Hyponatremia

Reduced GFR from any cause
SIAD (Small cell lung cancer, head & neck cancer)
Volume depletion from paracentesis/thoracentesis
Cancer-associated nausea, pain
Cancer-associatedvomiting, diarrhea
Chemotherapy (cisplatin,
cyclophosphamide, vinca alkaloids)
Immunotherapy-induced thyroiditis/adrenalitis/
hypophysitis
CAR-T-associated CRS& volume depletion

Hypernatremia

Cancer or therapy-associated vomiting, diarrhea Decreased fluid intake (lack of thirst, dysgeusia) Diabetes insipidus (Central- CNS tumors; Nephrogenic-ifosfamide)

Hypomagnesemia

Cancer-associated vomiting, diarrhea Decreased dietary intake with cancerassociated anorexia Decreased absorption (PPI) Chemotherapy (cisplatin, EGFR inhibitors)

Hypokalemia

Cancer-associated, poor intake
Diarrhea/vomiting from chemotherapy or cancer
Ileal conduit
Leukemia/lymphoma blast crisis
Lysozymuria with certain leukemias
Cisplatin, ifosfamide-induced tubulopathy
ACTH/renin/aldosterone-secreting tumors
GM-CSF, Vitamin B-12 therapy
Post-AKI diuresis (ATN, obstruction, etc.)

Hyperkalemia

AKI/CKD from any cause in a cancer patient Tumor lysis syndrome

Hypophosphatemia

Decreased dietary intake with cancer-associated anorexia

Tumor osteomalacia (FGF-23 secretion from hemangiopericytomas, giant cell tumors)

Hyperphosphatemia

AKI/CKD from any cause in a cancer patient Tumor lysis syndrome

Acid-Base Disorders

Metabolic acidosis

Type A LA (infection, etc.)

Type B LA (lymphoma, leukemia, other tumors)
Fanconi syndrome (chemotherapy, MM)

Metabolic alkalosis

Cancer-associated vomiting Renin producing tumor

Respiratory acidosis

Opioid analgesics for cancer pain Brainstem/cervical spine tumor Tracheal stenosis from tumor/radiation

Respiratory alkalosis

Central neurogenic hyperventilation from pontine tumors

CASE

A 10-year-old girl diagnosed with Ewing sarcoma of the right femur has been undergoing multi-agent chemotherapy, including cisplatin, vincristine, doxorubicin, and ifosfamide, now on her 4th cycle. She initially presented with localized bone pain and swelling; a biopsy confirmed Ewing sarcoma. The patient has tolerated treatment relatively well but has recently developed increasing fatigue, muscle cramps, and mild nausea.

She has no history of recent infections or other comorbidities. Her physical exam is notable for mild pallor and mild tenderness at the tumor site. Limb function is preserved with no neurological deficits. Volume status appears normal.

Laboratory data:

Scr: 1.2 mg/dL (baseline 0.5)

Bun: 35 mg/dL

Na+: 140 mEq/L

K+: 3.1 mEq/L

Mg²⁺: 1.2 mg/dL

PO₄³-: 2.0 mg/dL

Cl-: 112 mEq/L

Uric acid: 4.5 mg/dL

pH: 7.31

PaCO₂: 30 mmHg

HCO₃-: 18 mEq/L

Urine sediment: no dysmorphic RBC or casts

Urine output: 1.2 mL/kg/hr

Question:

Which diagnosis best explains this patient's acute kidney injury and biochemical abnormalities?

- A) Cisplatin-induced nephrotoxicity
- B) Tumor lysis syndrome (TLS)
- C) Thrombotic microangiopathy (TMA)
- D) Ifosfamide-induced nephrotoxicity

Pediatric Nephrology > Article

Pediatric onconephrology: time to spread the word

Part I: early kidney involvement in children with malignancy

Educational Review

Published: 27 November 2020

Volume 36, pages 2227–2255, (2021)

Cite this article