High-Risk Orbital and Maxillary Rhabdomyosarcoma with CSF Involvement: A Case Report

14-year-old female, FOXO1-positive alveolar subtype

Presenter: Dr. Mohammad Faranoush, Professor of Pediatric
Hematology Oncology
Multidisciplinary Tumor Board
September 2nd, 2025

Case Introduction

Patient Demographics & Presentation

- Demographics: 14-year-old female
- Chief Complaint:Progressive right eyeproptosis for 6 weeks
- Associated symptoms: Decreased visual acuity, diplopia, facial pain
- PMH/FH: Unremarkable, no family history of cancer
- Physical Exam: 3mm proptosis, limited extraocular movement, palpable right maxillary mass
- Initial Impression:
 Suspected orbital
 malignancy

Clinical Timeline

1

Week 0: Symptom Onset Initial eye discomfort

and mild proptosis

2

Week 4: First Medical Visit

Ophthalmology referral for worsening symptoms MRI ordered for visible proptosis

3

Week 6: Diagnosis

Biopsy confirms alveolar rhabdomyosarcoma Staging workup initiated

Rhabdomyosarcoma Overview

Incidence & Epidemiology

- Most common soft tissue sarcoma in children
- ~350 new cases annually in US
- Head & neck region: 40%
 of cases

5-year Survival Improvement (1975-2017)

Data source: NCI SEER 1975-2017

Subtype Distribution

Key Prognostic Factors

▼ FOXO1 status

Primary site

worse

Parameningeal:

Fusion

positive:

worse

♠ Age

Teen: worse

CNS

invasion

CSF+:

significantly

worse

Diagnostic Imaging

MRI: Axial T1 with Contrast

Findings: Right orbital enhancing mass (3.2 × 2.8 cm) with medial and inferior orbital wall invasion
Features: Heterogeneous

enhancement, extra-ocular muscle infiltration, optic

nerve displacement

CT: Coronal View with Contrast

Findings: Right maxillary sinus involvement with bone erosion

Features: Extension to pterygopalatine fossa, classified as parameningeal site

Initial Radiologic Impression

- ✓ Aggressive orbital mass with maxillary extension
- ✓ Parameningeal involvement (critical prognostic factor)
- ✓ No initial evidence of intracranial extension or distant metastasis

Pathology and Molecular Studies

Histopathology

Alveolar Rhabdomyosarcoma (H&E stain, 400×)

- → Malignant small round blue cells
- → Characteristic fibrous septa
- → Alveolar pattern architecture

Diagnostic Approach

Core needle biopsy performed via transconjunctival approach with rapid diagnosis in frozen section followed by definitive histopathology and molecular testing

Immunohistochemistry & Molecular Profile

Marker	Result	Significance
Desmin		differentiation
Myogenin	Positive (diffuse)	Skeletal muscle lineage
MyoD1	Positive	Skeletal muscle lineage
Ki-67	60%	High proliferation index

▼ Molecular Testing Results

FOXO1 Fusion Status: POSITIVE

PAX3-FOXO1 fusion detected by RT-PCR

▲ Clinical Significance:

- Associated with alveolar histology
- Poorer prognosis than fusion-negative cases
- Higher risk of metastasis and recurrence

Disease Staging & Risk Stratification

Risk Classification Pathway

High-Risk Determinants

- A Histology: Alveolar subtype
- ▲ Molecular: FOXO1 fusion positive
- ▲ Site: Parameningeal (orbit with maxillary sinus extension)
- ▲ Size: >5cm with invasive features
- Age: 14 years (adolescent)

Initial CNS Evaluation

MRI Brain with Contrast

- No evidence of brain parenchymal involvement
- No leptomeningeal enhancement

Cerebrospinal Fluid Analysis

- Initial CSF: Negative for malignant cells
- Cytology: No tumor cells detected
- Flow cytometry: Negative

Despite initial CNSnegative status, close monitoring required due to parameningeal location and high-risk features

Initial Treatment Plan

Agent	Dose	Schedule	Radiotherapy Modality:
Vincristine (V)	1.5 mg/m²	Weeks 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34	Proton Therapy To minimize dose to developing brain
Dactinomycin (A)	1.5 mg/m²	Weeks 1, 13, 25	Dose: 50.4Gy in 28fractions
Cyclophosphamide (C)	2.2 g/m²	Weeks 1, 13, 25	1.8 Gy per fraction
Irinotecan (I)	50 mg/m²/day × 5	Weeks 4, 7, 10, 16, 19, 22, 28, 31, 34	Target: Orbit and maxillary sinus CTV = GTV + 1.5cm anatomically
Vincristine (V)	1.5 mg/m²	Weeks 4, 7, 10, 16, 19, 22, 28, 31, 34	constrained Timing: After week 12 of chemo Concurrent with
VAC/VI Regimen Details Duration: 42 wee G-CSF support w		e	continued chemotherap
Response assess 12, 24	ment after w	eeks	Multidisciplinar Input
			"Given the parameningea site and highrisk features, we recommen comprehensive therapy with VAC/VI plus radiation, though initial CSF studies are negative." — Tumor Boar Consensu. Plan included regular CSF monitoring during treatmen due to high risk of CNS

Critical Treatment Pivot

Detection of CNS involvement after initial negative findings

CSF Findings

- Flow cytometry: Positive for tumor cells (CD56+, desmin+)
- Molecular: PAX3-FOX01 fusion detected in CSF sample

MRI Findings

- New finding: Subtle leptomeningeal enhancement along basilar cisterns
- Primary tumor: Partial response (30% reduction in orbit/maxilla)
- ▲ Interpretation: CNS metastasis despite ongoing chemotherapy

Adapted Treatment Strategy

Multidisciplinary Decision

"The detection of CSF involvement necessitates an immediate and comprehensive adaptation of our treatment approach. We recommend intensification of systemic therapy with topotecan/cyclophosphamide, addition of intrathecal methotrexate, and expansion of radiation to include craniospinal irradiation."

— Consensus statement, Pediatric Neuro-Oncology Tumor Board

Radiotherapy Details

Craniospinal Irradiation Fields

Treatment Planning Considerations

- Special attention to lens, cochlea, pituitary doses
- ★ Adolescent growth considerations
- Cardiac sparing techniques employed
- Ovarian shielding to preserve fertility

Technical Specifications

Radiation Treatment Parameters
Modality Modulated Proton Therapy)
36 Gy in 20 CSI Dose fractions (1.8 Gy/fraction)
Boost Tactions to Orbit/maxilla
Total Dose 50.4 Gy to primary site
Treatment 5.5 weeks (5 Duration fractions/week)
Initiated within 7 Timing days of CSF+ finding

Dose Constraints for Organs at	
Risk	
RISK	

Structure Constraint Achieved

Lens	Mean < 7 Gy	5.8 Gy
Optic nerves	Max < 54 Gy	52.1 Gy
Cochlea	Mean < 35 Gy	32.6 Gy
Pituitary	Mean < 40 Gy	38.2 Gy
Heart	Mean < 15 Gy	12.3 Gy

Treatment Response

Pre-Treatment (Week 0)

Tumor size: 3.2 × 2.8 cm Extensive orbital and maxillary involvement

Post-Treatment (Week 42)

No measurable disease Residual post-treatment changes only

RECIST Response

Week 12 Partial Response -30%

Week 24 Passage -80%

Week 42 (End of Res

Complete -100% Response

CNS Response

Timepoint CSF Cytology MRI Findings

Week 12 Positive Leptomeningeal enhancement

Week 18 Suspicious Decreased enhancement

Negative No

Week 24+ × 3 enhancement

Treatment-Related Toxicities (CTCAE v5.0)

- Most severe: Grade 4
 neutropenia requiring
 hospitalization × 2
- Persistent: Grade 2 fatigue, neuropathy, hearing loss

Follow-up & Surveillance

Surveillance Protocol

End of

Year 1

Year 2

Treatment

q3-month MRI q3-month MRI q6-month MRI

Annual followup

Week 42

Current Patient Status

Complete Remission at 18 Months

- Local response: No evidence of disease at primary site
- ONS response: No evidence of leptomeningeal disease
- **♥** Functional status: ECOG 1, returned to school
- Quality of life: Good, minor persistent visual deficit

Late Effects Monitoring

- Ophthalmolo deurocognitive q6-month Annual visual assessment
 - assessment

Audiologic Cardiac

Annual audiometry

Annual **ECHO**

* Endocrine * Fertility Growth,

Pubertal

thyroid, puberty development

 Patient enrolled in COG ALTE07C1 late effects study for comprehensive longterm follow-up

Survivorship Care Approach

"Our goal is not only to achieve disease control but to optimize quality of life. This patient's care has transitioned from acute treatment to a comprehensive survivorship model, with multidisciplinary monitoring for both disease recurrence and treatment-related late effects."

- Pediatric Oncology Survivorship Team

Literature Review

Similar Case Reports & Series

Author	Year	Site	Subtype	CSF+	Treatment	(
Burke et al.	2017	Parameningeal	Alveolar	Yes	VAC + CSI 36 Gy	1
Raney et al.	2011	Head/Neck	Mixed	Yes (n=8)	Chemo + CSI	5
Casey et al.	2019	Orbital	Alveolar	Initial+	VAC/VI + CSI 36 Gy	F
Zhang et al.	2020	Parameningeal	Alveolar	Delayed+	Intensified + CSI	(2 [

FOXO1 Status Impact After Overall Survival by POXO1 Status FOXO1 Negative FOXO1 Positive FOXO1 FOXO1 Positive FOXO1 FOXO

Evidence-Based Treatment Rationale

- Early CSF monitoring essential for parameningeal cases (COG recommendation)
- Intensified systemic therapy plus CNS-directed therapy improved outcomes (Raney et al.)
- CSI dose of 36 Gy associated with improved CNS control (Burke et al.)
- Early treatment adaptation critical for newly detected CNS disease (Zhang et al.)

Key Learning Points

Molecular Profiling Critical

FOXO1 fusion status is essential for risk stratification and treatment planning in rhabdomyosarcoma, with fusion-positive cases requiring more intensive therapy

Adaptive Treatment Approach

Promptly pivoting treatment strategy when new findings emerge is critical for optimal outcomes; flexibility in protocol adaptation improves survival

Vigilant CNS Monitoring

Regular CSF assessment is mandatory for parameningeal RMS even when initially negative, as delayed CNS involvement can occur despite systemic therapy

Multidisciplinary Coordination

Comprehensive care involving pediatric oncology, radiation oncology, neurosurgery, and rehabilitation medicine is essential for complex cases

CSI Standard for CNS+ Disease

For CSF-positive disease, craniospinal irradiation to 36 Gy with primary site boost represents standard of care based on best available evidence

Long-term Survivorship Planning

Early implementation of survivorship care plan addresses both oncologic surveillance and therapy-related late effects monitoring

Discussion Questions

What is the optimal frequency of CSF monitoring for parameningeal rhabdomyosarcoma patients who are initially CSF-negative?

Is there a role for prophylactic CNS-directed therapy in high-risk FOXO1-positive parameningeal rhabdomyosarcoma?

How would you modify this patient's long-term followup plan given the history of CSF involvement and craniospinal irradiation?

What novel therapeutic approaches or clinical trials would you consider for a similar patient who progresses despite initial intensified therapy?

RAS/MAPK Clinical B-apotenin Bedom NRAS KRAS PI3K/AKT/mTOR FOOX NRAS NIAS Clinical Importance for KRAS Childhood Sarcoma **B**-catenin _FOXQ1_ Immunitorapy Targets BRAS ₽3K Immunoitorapy Targets AKT KRK PD-1 PD-1 JNK JNK CTA-4 PD-4 Nivollizubum LAG-3 Nivolumab PFR mTOR IGF-1R Sarcomas with High Prevelence FRIK AKK · Osteosarcoma · Ewing Sarcoma Rhabbormsyarcoma

MOLECULAR PATHWAY AND SIGNALING IN SARCOMA

IMPORTANCE OF THAT FOR PROGNOSTIC FACTOR

Thank you for your attention.

Questions about childhood sarcoma?

