Circulating Tumor DNA as a Marker for Minimal Residual Disease in Pediatric Rhabdomyosarcoma

Homayon Yousefi, Ph.D.
Thalassemia & Hemoglobinopathy Research Center

Health Research Institute, Ahvaz Jundishapur

yousefi.h@ajums.ac.ir | +98_61 3375 0410

 \sim

Presentation Outline

1 Introduction to Rhabdomyosarcoma

Overview of RMS: Epidemiology & Subtypes

Understanding Minimal Residual Disease

4 Circulating Tumor DNA: Biological Basis

Role of ctDNA in RMS

6 Clinical Applications in Pediatric Oncology

7 Challenges and Limitations

8 Future Directions in ctDNA Research

9 Case Studies and Clinical Trials

10 Comparison with Other Biomarkers & Conclusion

Introduction to Rhabdomyosarcoma

What is Rhabdomyosarcoma?

Malignant tumors arising from **mesenchymal cells** with skeletal muscle differentiation

Most common soft tissue sarcoma in children and adolescents

Of sarcomas in children

Accounts for nearly half of all pediatric sarcomas

Variable prognosis

5-year survival: 70-90% for localized, <30% for metastatic

Primarily affects **children** and adolescents

More than 50% in patients up to 20 years old

Novel biomarkers needed for **risk stratification**MRD detection and treatment monitoring crucial

Current Challenges in RMS Management

Despite advances in multimodal therapy...

Outcomes remain **suboptimal** for high-risk patients

Identification of **novel biomarkers** is crucial for:

Risk stratification

Minimal residual disease (MRD) detection

Treatment monitoring

Poor survival in metastatic disease

Less than 30% 5-year survival rate

Limited biomarkers for early detection

Current methods lack sensitivity and specificity

Relapse after initial treatment

20% of localized disease patients relapse

Invasive procedures for monitoring

Bone marrow sampling requires sedation in children

Overview of Rhabdomyosarcoma - Epidemiology

Understanding Minimal Residual Disease

Current Methods of MRD Detection

Method	Sensitivity	Specificity	Invasiveness	Main Limitations	Cost
qPCR	High (10 ⁻⁴ -10 ⁻⁶)	High	Moderate (bone marrow)	Not universally applicable, requires specific targets	Moderate
Flow Cytometry	Moderate (10 ⁻³ -10 ⁻⁴)	Moderate	Moderate (bone marrow)	Limited prognostic validation	High
Immunocytology	Low- Moderate (10 ⁻³)	Variable	Low (blood sample)	Variable protein expression, low reproducibility	Low
ctDNA	High (10 ⁻⁴ -10 ⁻⁵)	High	Very Low (blood sample)	Technology still developing, standardization needed	High (currently)

Circulating Tumor DNA - Biological Basis

Advantages Over Tissue Biopsy

Circulating Tumor DNA - Methods of Analysis

1

Sample Collection

Blood draw in specialized tubes

2

cfDNA Enrichment

Magnetic beads or polyethylenglycol

3

DNA Extraction

Isolation of cfDNA from plasma

4

Analysis

Detection of tumor-specific alterations

- **Sequencing Approaches**
- Whole-genome sequencing (WGS)
- **Whole-exome sequencing (WES)**
- **Targeted sequencing** (big panels)
- Shallow WGS (sWGS)

- Detectable Alterations
- Point mutations
- **Copy number changes**
- Insertions/deletions
- **Gene rearrangements**
- **DNA methylation** patterns

- **Technical Considerations**
- Short half-life allows recent monitoring
- Prior knowledge needed for mutation-driven analysis
- Phosphorylation-based protocols for rare diseases
- **∀** High concitivity required for MPD

Role of ctDNA in Rhabdomyosarcoma - ctDNA as a Biomarker for MRD

QctDNA as MRD Marker

- Persistent detection of ctDNA after treatment correlates with relapse risk
- Normalizing levels indicate favorable prognosis
- Enables real-time monitoring of tumor burden
- Complementary to circulating tumor cell (CTC) evaluation
- **Detectable** in 60-70% of patients at diagnosis

Clinical Utility in RMS

- Localized RMS and local relapse produce limited CTC numbers
- Metastatic cases show higher levels of ctDNA and CTCs
- Bone marrow analysis reveals disseminated tumor cells in all cases

Role of ctDNA in Rhabdomyosarcoma - Prognostic Implications

Role of ctDNA in Rhabdomyosarcoma - Relationship with CTCs and DTCs

Biomarker Comparison

Low numbers in localized disease

Elevated levels in metastasis

Detected at diagnosis in patients who later relapse

Complements CTC evaluation

Provides molecular profile of tumor

Enables longitudinal monitoring of treatment response

Molecular Characterization

- **Genotype concordance** among CTCs, cfDNA, and primary tumor cells
- **Integrated analyses** provide comprehensive tumor biology depiction
- Combinatorial approaches: PCR, flow cytometry, NGS
- Mutations prominently identified in alveolar RMS

Disseminated Tumor Cells (DTCs)

- Detected in **bone marrow** of all investigated RMS cases
- Suggests marrow as early dissemination site
- DTC amplification associated with adverse survival

Clinical Applications of ctDNA in Pediatric Oncology - Monitoring Treatment Response

Treatment Response Monitoring

Pre-treatment: Reflect tumor burden Predict response **Predict toxicity** ctDNA to guide ICI Progression:

Co-evolution of tumor and

immune landscape

Early on-treatment*:

 Predict response · Discriminate durable benefit from radiological SD

Extended monitoring**

- Assess response Identify pseudoprogression
- Early warning of progression

Finding the sweet

· the optimal timepoints and thresholds

spot:

One-size-fits-all:

- · a dynamic, multiparameter model;
- · a robust and costeffective assay

Refining model:

- · cross-study validation;
- · incorporating nonliquid components
- ctDNA levels correlate with tumor burden during therapy
- **Serial assessment** enables real-time monitoring
- **Declining levels** indicate positive treatment response
- Persistent detection suggests residual disease

Advantages Over Current Methods

Minimally invasive compared to bone marrow sampling

- C Allows frequent monitoring without sedation
- Faster results than conventional imaging

Current Gold Standard

Bone marrow sampling + flow cytometry or RQ-PCR

Limited by available cells/DNA

ctDNA Approach

Plasma analysis + tumorspecific DNA detection

Higher sensitivity for MRD detection

Clinical Applications of ctDNA in Pediatric Oncology - Predicting Relapse

★Early Relapse Detection

- ctDNA provides **lead time** of several weeks before clinical relapse
- Rising levels during follow-up indicate impending progression
- Sensitive detection of residual disease after treatment
- One in three RMS patients experience relapse

LClinical Evidence

- PAX3-FOXO1 fusion ctDNA detection correlates with poor prognosis
- Droplet digital PCR detection from archival plasma samples
- Post-treatment ctDNA presence associated with **tumor relapse**

Q Detection Method

P Clinical Utility

Identifies high-risk patients

Clinical Applications of ctDNA in Pediatric Oncology - Integration in Clinical Workflows

べClinical Integration Pathway

- Treatment Planning

 Risk stratification based on initial ctDNA levels
- During Therapy

 Serial monitoring of ctDNA dynamics
- Post-Treatment

 MRD assessment to guide surveillance intensity

Challenges and Limitations - Biological Variability and Ethical Considerations

Biological Variability

ctDNA concentrations vary due to **tumor necrosis**, inflammation, and chemotherapy stress Timing Issues

Post-treatment collection timing affects tumorderived DNA amount in circulation

Tumor Burden

Low tumor burden results in limited ctDNA release, complicating detection

Multiple
Measurements

Single measurement insufficient; trends from multiple samples required

- Sample collection challenges in younger patients
- No established guidelines for sampling frequency when tumor status unknown
- \$ High costs restrict widespread screening implementation
- **Psychological impact** of detecting minimal residual disease

Risk-Benefit Balance

In pediatric RMS, careful consideration of risk-benefit ratio is essential when performing genetic analyses that also profile the germline

Conclusion - Summary of Key Findings

EKey Findings

ctDNA detectable in **60-70%** of pediatric RMS patients at diagnosis

Prognostic Value

Absence of detectable ctDNA indicates more favorable prognosis

Treatment Monitoring

Enables real-time tracking of therapeutic response

Early Relapse Detection

Clinical Implications

Personalized Medicine

ctDNA analysis enables **risk stratification** and treatment adaptation

Complementary Approach

Works best when **combined** with other biomarkers and clinical assessments

✓ Future Directions

Further studies needed to refine technologies, implement ctDNA detection in clinical workflows, and identify new opportunities to personalize pediatric RMS management

Conclusion - Future Research Directions

*⊼*Research Priorities

Enhanced sensitivity for low-abundance mutations

Standardized protocols for sample processing

Larger Cohorts

Multicenter studies to validate findings

Longitudinal data across treatment phases

Multi-analyte Integration

Combined biomarkers for comprehensive monitoring

Multiomic approaches to

Novel Targets

Methylation signatures for improved specificity

RMS-specific markers for enhanced detection

EClinical Implementation

- Integration into **treatment protocols** as standard of care
- Development of risk-adapted treatment strategies
- **Education programs** for clinicians on ctDNA interpretation
- **©** Establishment of **clinical guidelines** for ctDNA use in RMS

Vision for the Future

ctDNA analysis will become an integral component of precision medicine in pediatric oncology, enabling earlier intervention, reduced toxicity, and improved survival outcomes for children with rhabdomyosarcoma

Conclusion - Summary of Key Findings

EKey Findings on ctDNA in RMS

- ctDNA serves as a **promising biomarker** for minimal residual disease detection in pediatric rhabdomyosarcoma
- Detectable in **60-70%** of patients at diagnosis, comparable to bone marrow or blood-derived tumor cells
- Persistent detection after treatment correlates with increased relapse risk
- Normalizing levels indicate favorable prognosis and treatment response
- Provides **lead time** of several weeks before clinical relapse manifestation
- Enables **real-time monitoring** of therapy response and tumor evolution

Clinical Impact

20%

of localized RMS patients relapse due to residual tumor cells undetected by conventional methods

- Potential for **personalized treatment** approaches based on MRD status
- Balancing **treatment intensity** with risk of relapse
 - **P** Future Directions

Refinement of technologies and implementation in clinical workflows will enhance personalized management of pediatric RMS

Conclusion - Clinical Implications of ctDNA for RMS Management

EClinical Applications

Risk Stratification

Molecular risk assessment beyond clinical factors

Treatment Monitoring

Real-time response evaluation during therapy

Early Relapse
Detection

Lead time before clinical manifestation

Personalized
Therapy

Treatment adaptation

based on MRD status

Minimally invasive alternative to repeated tissue biopsies and bone marrow sampling

¼Future Impact

- Treatment de-escalation for low-risk patients with undetectable ctDNA
- Treatment intensification for high-risk patients with persistent ctDNA
- Novel therapeutic targets identified through molecular characterization
- Dynamic treatment adaptation based on molecular response

Transformative Potential

Integration of ctDNA analysis into clinical practice has the potential to revolutionize risk stratification and treatment personalization in pediatric RMS

Future Directions in ctDNA Research - Innovative Technologies

▲Next-Generation Sequencing Approaches

WGS/WES

Whole-genome/exome sequencing for comprehensive genomic profiling

sWG S

Shallow whole-genome sequencing for cost-effective CNV detection

Methylation Analysis

Epigenetic profiling for

tissue-of-origin identification

Targeted Sequencing

High-depth coverage of specific genomic regions

These approaches enable detection of **copy-number variations** associated with disease burden

Advanced Analytical Techniques

- •• Multi-analyte liquid biopsy combining ctDNA, CTCs, exosomes, and miRNA
- Tumor heterogeneity characterization through integrated analysis
- Resistance mechanisms identification in refractory/relapsed disease
- **Clonal evolution** tracking throughout treatment course

Future Potential

Integration of multiomic data in liquid biopsy context will enable more comprehensive tumor characterization and guide personalized treatment strategies in pediatric RMS

Future Directions in ctDNA Research - Potential for Personalized Medicine

Personalized Treatment Approaches

Risk Stratification

ctDNA-based MRD assessment categorizes patients into risk groups **Treatment De**escalation

Low-risk patients may avoid excessive treatment toxicity

High-risk patients identified for more

aggressive therapy

Dynamic Adaptation

Real-time monitoring enables treatment modification

Eclinical Implementation

- Several trials now incorporate ctDNA as an outcome and stratification measure
- Particularly valuable in **pediatric oncology** where overtreatment is a major concern
- Enables early intervention in patients showing molecular relapse
 - Guides targeted therapy selection based on detected mutations
 - **Future Vision**

ctDNA analysis will likely play a growing role in risk-adapted treatment approaches, ultimately improving survival while reducing therapy-related toxicity in pediatric RMS patients

Contact Information & Questions

*****Contact Information

- **L** Homayon Yousefi, Ph.D.
- Thalassemia & Hemoglobinopathy Research Center
- Health Research Institute, Ahvaz Jundishapur
- yousefi.h@ajums.ac.ir
- +98 61 3375 0410

Questions & Discussion

Thank you for your attention. I welcome any questions or comments about circulating tumor DNA as a marker for minimal residual disease in pediatric rhabdomyosarcoma.

Thank You

For your attention to this presentation on circulating tumor DNA as a marker for minimal residual disease in pediatric rhabdomyosarcoma

Contact Information

- Homayon Yousefi, Ph.D.
- yousefi.h@ajums.ac.ir
 - +98 61 3375 0410
- Thalassemia & Hemoglobinopathy Research Center, Ahvaz Jundishapur

